Nucleotide pyrophosphatase employs a P-loop-like motif to enhance catalytic power and NDP/NTP discrimination.

نویسندگان

  • Ildikó Pécsi
  • Judit E Szabó
  • Scott D Adams
  • István Simon
  • James R Sellers
  • Beáta G Vértessy
  • Judit Tóth
چکیده

We investigated the potential (d)NDP/(d)NTP discrimination mechanisms in nucleotide pyrophosphatases. Here, we report that dUTPase, an essential nucleotide pyrophosphatase, uses a C-terminal P-loop-like sequence in a unique mechanism for substrate discrimination and efficient hydrolysis. Our spectroscopy and transient kinetics results on human dUTPase mutants combined with previous structural studies indicate that (i) H-bond interactions between the γ-phosphate and the P-loop-like motif V promote the catalytically competent conformation of the reaction center at the α-phosphate group; (ii) these interactions accelerate the chemical step of the kinetic cycle and that (iii) hydrolysis occurs very slowly or not at all in the absence of the γ-phosphate--motif V interactions, i.e., in dUDP, dUDP.BeFx, or in the motif V-deleted mutant. The physiological role of dUTPase is to set cellular dUTPdTTP ratios and prevent injurious uracil incorporation into DNA. Based upon comparison with related pyrophosphate generating (d)NTPases, we propose that the unusual use of a P-loop-like motif enables dUTPases to achieve efficient catalysis of dUTP hydrolysis and efficient discrimination against dUDP at the same time. These specifics might have been advantageous on the appearance of uracil-DNA repair. The similarities and differences between dUTPase motif V and the P-loop (or Walker A sequence) commonly featured by ATP- and GTPases offer insight into functional adaptation to various nucleotide hydrolysis tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Characterization of Arginine Fingers: Identification of an Arginine Finger for the Pyrophosphatase dUTPases.

Arginine finger is a highly conserved and essential residue in many GTPase and AAA+ ATPase enzymes that completes the active site from a distinct protomer, forming contacts with the γ-phosphate of the nucleotide. To date, no pyrophosphatase has been identified that employs an arginine finger fulfilling all of the above properties; all essential arginine fingers are used to catalyze the cleavage...

متن کامل

Identification and characterization of a NBS–LRR class resistance gene analog in Pistacia atlantica subsp. Kurdica

P. atlantica subsp. Kurdica, with the local name of Baneh, is a wild medicinal plant which grows in Kurdistan, Iran.  The identification of resistance gene analogs holds great promise for the development of resistant cultivars. A PCR approach with degenerate primers designed according to conserved NBS-LRR (nucleotide binding site-leucine rich repeat) regions of known disease-resistance (R) gene...

متن کامل

Dimeric dUTPases, HisE, and MazG belong to a new superfamily of all-alpha NTP pyrophosphohydrolases with potential "house-cleaning" functions.

Structure-guided analysis of the new dimeric dUTPase family revealed its sequence relationship to the phage T4 dCTPase, phosphoribosyl-ATP pyrophosphatase HisE, NTP pyrophosphatase MazG, and several uncharacterized protein families, including the human protein XTP3TPA (RS21-C6), which is overexpressed in embryonic and cancer cells. Comparison with the recently determined structure of a MazG-lik...

متن کامل

CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition.

RNA polymerase inhibitors like the CBR class that target the enzyme's complex catalytic center are attractive leads for new antimicrobials. Catalysis by RNA polymerase involves multiple rearrangements of bridge helix, trigger loop, and active-center side chains that isomerize the triphosphate of bound NTP and two Mg(2+) ions from a preinsertion state to a reactive configuration. CBR inhibitors ...

متن کامل

Characterization of Sucrolysis via the Uridine Diphosphate and Pyrophosphate-Dependent Sucrose Synthase Pathway.

The breakdown of sucrose to feed both hexoses into glycolytic carbon flow can occur by the sucrose synthase pathway. This uridine diphosphate (UDP) and pyrophosphate (PPi)-dependent pathway was biochemically characterized using soluble extracts from several plants. The sucrolysis process required the simultaneous presence of sucrose, UDP, and PPi with their respective K(m) values being about 40...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 35  شماره 

صفحات  -

تاریخ انتشار 2011